Original paper

The advantage of CT scans and 3D visualizations in the analysis of three child mummies from the Graeco-Roman Period

Villa, Chiara; Davey, Janet; Craig, Pamela J.G.; Drummer, Olaf H.; Lynnerup, Niels

Abstract

Three child mummies from the Graeco-Roman Period (332 BCE – c. 395 CE) were examined using CT scans and 3D visualizations generated with Vitrea 2 and MIMICS graphic workstations with the aim of comparing the results with previous X-ray examinations performed by Dawson and Gray in 1968. Although the previous analyses reported that the children had been excerebrated and eviscerated, no evidence of incisions or breaches of the cranial cavity were found; 3D visualizations were generated showing the brain and the internal organs to be in situ. A larger number of skeletal post-mortem damages were identified, such as dislocation of mandible, ribs, and vertebrae, probably suffered at the time of embalming procedure. Different radio-opaque granular particles were observed throughout bodies (internally and externally) and could be explained as presence of natron, used as external desiccating agent by the embalmers, or as adipocerous alteration, a natural alteration of body fat. Age-at-death was estimated using the 3D visualization of the teeth, the state of fusion of the vertebrae and the presence of the secondary centers of the long bones: two mummies died at the age of 4 years ± 12 months, the third one at the age of 6 years ± 24 months. Hyperdontia or polydontia, a dental anomaly, could also be identified in one child using 3D visualizations of the teeth: two supernumerary teeth were found behind the maxillary permanent central incisors which had not been noticed in the Dawson and Gray's X-ray analysis. In conclusion, CT-scan investigations and especially 3D visualizations are important tools in the non-invasive analysis of the mummies and, in this case, provided revised and additional information compared to the only X-ray examination.

Keywords

hyperdontiagraeco-roman periodmummies3d visualizationct scan