Original paper

CO3 substitution in apatite: further insight from new crystal-chemical data of Kasekere (Uganda) apatite

Comodi, Paola; Liu, Yu

European Journal of Mineralogy Volume 12 Number 5 (2000), p. 965 - 974

27 references

published: Oct 4, 2000
manuscript accepted: Apr 4, 2000
manuscript received: Dec 6, 1999

DOI: 10.1127/ejm/12/5/0965

BibTeX file

ArtNo. ESP147051205005, Price: 29.00 €

Download preview PDF Buy as PDF


Abstract The vibrational and structural characteristics of a CO3-rich apatite from an extrusive carbonatite in Kasekere, Uganda, were studied by infrared and Raman spectroscopy, single-crystal X-ray diffraction and electron microprobe analysis. Electron microprobe analysis provided, based on Σ(large cations) = 10, a cation content of (Ca9.78Sr0.05Fe0.01REE0.09Na0.07) (P4.3sSi0.52S0.04) and an anion content of (F0.54 Cl0.03). According to the structural refinement, the channel's anion occupancy is reduced, and the OR-content is about 1.2. The resulting Σ(P+Si+S) < 6 indicates that carbonate anions enter the tetrahedra. The IR spectrum exhibits all the bands of PO4, the V3 and V4 modes of SiO4 as well as the V2 and V3 modes of the carbonate group. In addition the structural refinement is compatible with a partial replacement of PO4 by CO3 and also the broadening of the Raman VI band of PO4 (15 cm-1 in Kasekere vs 5 cm-1 in F-apatite) correlates with a replacement of P)4 by CO3 The lateral dimensions of the structural channel (Ca2-Ca2 = 4.105(2) Å vs 4.084(2) Å in pure OH-apatite) point to the presence of CO3 in the channels as well. Moreover in the infrared spectra, the curve fitting technique did show a wide band at 1525 cm-', implying an A-site carbonate in a B-type dominant carbonate Ap. Comparison of multimethod analyses suggests that the Kasekere apatite is the first occurrence of apatite from a natural environment in which, in addition to a larger substitution of CO3 for PO4, few percents of CO3 enter the channel. Tentatively, the formula is: (Ca9.78Sr0.05Fe0.01REE0.09Na0.07) (P4.38Si0.52S0.04C1.23) O23.45 (F0.54 OH1.2Cl0.03 (CO3)0.23).


apatitecrystal-chemistryCO3-substitutionmicroraman spectroscopyinfrared spectroscopy