Original paper

An inverse modeling approach to obtain P–T conditions of metamorphic stages involving garnet growth and resorption

Lanari, Pierre; Giuntoli, Francesco; Loury, Chloé; Burn, Marco; Engi, Martin

European Journal of Mineralogy Volume 29 Number 2 (2017), p. 181 - 199

published: Apr 1, 2017

DOI: 10.1127/ejm/2017/0029-2597

BibTeX file

ArtNo. ESP147052902012, Price: 29.00 €

Download preview PDF Buy as PDF


This contribution presents an approach and a computer program (GRTMOD) for numerical simulation of garnet evolution based on compositions of successive growth zones in natural samples. For each garnet growth stage, a new local effective bulk composition is optimized, allowing for resorption and/or fractionation of previously crystallized garnet. The successive minimizations are performed using the Nelder – Mead algorithm; a heuristic search method. An automated strategy including two optimization stages and one refinement stage is described and tested. This program is used to calculate pressure – temperature (P–T) conditions of crystal growth as archived in garnet from the Sesia Zone (Western Alps). The compositional variability of successive growth zones is characterized using standardized X-ray maps and the program XMapTools. The model suggests that Permian garnet cores crystallized under granulite-facies conditions at T>800°C and P = 6 kbar. During Alpine times, a first garnet rim grew at eclogite-facies conditions (650°C, 16 kbar) at the expense of the garnet core. A second rim was added at lower P (~1 kbar) and 630°C. In total, garnet resorption is modeled to amount to ~9 vol% during the Alpine evolution; this value is supported by our observations in X-ray compositional maps.


x-ray mappinggarnetthermodynamic modelingresorptionxmap tools