Original paper

The thermal and geochemical structure of geothermal and epithermal systems: A framework for interpreting fluid inclusion data

Hedenquist, Jeffrey W.; Reyes, Agnes G.; Simmons, Stuart F.; Taguchi, Sachihiro

European Journal of Mineralogy Volume 4 Number 5 (1992), p. 989 - 1016

92 references

published: Oct 14, 1992
manuscript accepted: Jan 30, 1992
manuscript received: Jun 14, 1991

DOI: 10.1127/ejm/4/5/0989

BibTeX file

ArtNo. ESP147050405006, Price: 29.00 €

Download preview PDF Buy as PDF


Abstract Fluid inclusions are often formed during mineral growth in hydrothermal systems. They may be studied in geothermal systems, where comparing the results with directly measured temperatures and fluid compositions allows short time scale variations in the system to be assessed. Insight into the interpretation of fluid inclusions is obtained from such comparisons, which can be applied to the interpretation of fluid inclusion data from extinct systems, e.g., epithermal ore deposits. The interpretation of fluid inclusion data from extinct systems is often much more difficult than for active systems, due to constraints imposed by the mineral record, which only preserves a partial history of a system, and uncertainty of the water level during activity. A good paragenetic control on timing of inclusion formation is also necessary, particularly where mere are several overprinting events. Fluid inclusion data need to be integrated with all relevant geochemical and geological constraints to develop an internally consistent model of the system; internal consistency is sometimes the only assurance that our conclusions are realistic. The fluid inclusion data reviewed here include Th and Tm measurements and the composition of extracted gases from liquid-dominated hydrothermal systems of neutral pH and relatively low salinity. The deep fluids in many systems boil in the uppermost 1 to 2 km of ascent, though mixing with cooler waters on the margins and very close to the surface will quench boiling. These processes can be recognized from the interpretation of paragenetically-controlled Th and Tm data; furthermore, the temperatures and compositions of the end-member fluids can be estimated, and the total gas content of a fluid inferred. However, the extraction and analysis of gases provides a more quantitative estimate of the total concentration while determining the species and relative amounts of gases. Gases may be used in studies of mineral-fluid equilibria, and as independent geothermometers (CO2, CH4, H2S and H2); combined with Th data, this information helps to estimate the temperature of first boiling as well as the initial gas content of a fluid, while variation in gas ratios between samples may be evidence for boiling and vapour loss. Comparison of gas composition with the host mineral assemblages allows post-entrapment changes and analytical artefacts to be recognized (e.g., H2), which are topics for further study before gases can be confidently used to their full potential. Relatively non-reactive gases (N2, Ar, He, as well as gas isotopes such as 3He/4He) can be used as tracers of sources.


fluid inclusionsgeothermal systemsepithermal depositsboiling point profilegases.