Georgia Pe-Piper; David J.W. Piper:

The igneous rocks of Greece

The anatomy of an orogen

2002. XV, 573 pages, 288 figures, 11 tables, 17x25cm, 1520 g
Language: English

(Beiträge zur regionalen Geologie der Erde, Band 30)

ISBN 978-3-443-11030-7, bound, price: 98.00 €

in stock and ready to ship

Order form

BibTeX file


geology igneous rock orogen Greece


Synopsis top ↑

The Hellenide orogen in Greece is part of the Alpine-Himalaya mountain belt, created during the destruction of the Tethys ocean by the convergence of Gondwana and Eurasia. Within Greece, there is the record of a complete Wilson tectonic cycle of continental rifting, sea-floor spreading, plate subduction, and continental collision during Mesozoic and Cenozoic time. This book presents a new synthesis of the geological history of Greece as revealed by the varied igneous rocks. It is based on more than 30 years of field and laboratory studies by the authors together with a synthesis of the widely scattered published literature, that was written in many different languages. Basement rocks record Hercynian subduction and plutonism on the northern margin of Gondwana, which in the Permian and Triassic rifted into several microcontinents, thereby creating the eastern Mediterranean Neotethys ocean. Partial closure of strands of the Neotethys ocean resulted in the emplacement of Jurassic and Cretaceous ophiolites. Early Tertiary age collision produced a Hellenide mountain chain similar to the Alps and Himalayas. Rapid Neogene extension of the Hellenides behind the modern South Aegean arc has formed the Aegean Sea, triggered widespread back-arc igneous activity, and unroofed mid-crustal rocks. The geological setting, geochemistry, and significance of each group of rocks is presented in detail, with numerous maps and figures.

This book should be of interest not only to those who work in Greece, but also to all geologists seeking to understand the distribution and origin of rocks in orogenic belts, particularly those of the Tethyan region

Georgia Pe-Piper is professor of geology at Saint Mary's University, Halifax, (Canada). David J.W. Piper is a senior research scientist with the Geological Survey of Canada - Atlantic.

Rev.: Oryktologica Nea-News on Minerals top ↑

The Ancient Greek Philosopher Heraclitos from Ephesos in Ionian Coast of Asia Minor, what is now part of Turkey , had expressed back in 6th Century B.C. the great simple thing -as all simple things in life are Great : Heraclitos said : "All things flow" (in Hellenic).Time is relative and some things flow fast while others flow slowly. The Geological Evolution of the Earth flows within what we call "Geological Time". At a particular Geological Time the knowledge on the Geology of an area can be well known and documented and if the area is a "key" area - geologically speaking- , the Geology of this area based on comparative Geology ,can greatly help Earth Scientists in their research in other parts of the World. This is the Great contribution in the Earth Sciences Community of the book of Georgia Pe-Piper and David J. W. Piper "The igneous Rocks of Greece". They provide extensive well known and documented information on the general area centered on Hellas (Greece) , information which helps to solve vital problems related with the Geology of a key-area. There is no doubt that the general area centered in Greece is a key-area as it is located in active Plate Margins , presents a diversity in Geology as clearly cited by the authors. The Introduction of the Book "The igneous Rocks of Greece" includes sub-chapters such as : Igneous Rocks within the Hellenide Orogen , Outline of Geology of Greece, Terranes of the Hellenides , Pre-Mesozoic Continental Basement, Tectono-Stratigraphy of the Hellenides , Mesozoic Rifting and Sedimentation, The Ophiolites , Alpine Orogenesis , Neogene extension and block rotation ,Cenozoic igneous activity , Plate Tectonic evolution of Greece , to mention some of them. Following the classical way of review , we feel that the reader will know quantitative information on various aspects on the Geology of Greece .The information is well written and given in a way accessible even to people who are not familiarized with the Geology of Greece. After the Introduction in the book , there is a concise description of Late Paleozoic plutonism and volcanism and also valuable information on Triassic rifting and volcanism, Jurassic Pindos Ocean basin:Ophiolites and melanges -Mesozoic ocean crust of northeast Greece -Cretaceous ophiolites and subduction in central and south Greece-Early Tertiary plutonism and volcanism of Macedonia and Thrace -Early Miocene volcanism of Northern Aegean - Miocene plutonism in the Cyclades--Miocene to Quaternary volcanic rocks of central and Northern Greece-The South Aegean Arc and Synthesis. It is worth to read the Economic and Societal aspects of igneous activity and in this context it is worth to mention that beside the over 1100 References cited in the Bibliography of the book , the authors should include for their 2nd Revised Edition (!) of the book , information from all DEMO Reports of N.R.C. DEMOCRITOS of Greek Atomic Energy Commission (e.g. DEMO 80/4G , 81/4G and other published works), as Greece is the only Country in the World -to my knowledge- with complete Radiometric Coverage of Ground Natural Radioactivity of the whole Country after systematic and integrated Car-Borne-Scintillometry Survey carried out well before the Chernobyl disaster,[back in 1986] and hence before the impact of artificial radioactivity in the atmosphere and on the Surface of the Earth derived from Chernobyl Radioactive Disaster. Needless to say the tremendous information can be obtained when interpreting data of Natural Radioactivity in igneous rocks and adjacent sedimentary and metamorphic rocks in conjunction with other geological and geochemical data, information related with Uranium Deposits and Radioactive Minerals, Location of Oil Deposits and other applications.

Appendix 1

Appendix 1 of the book includes Geochronology of igneous rocks while Appendix 2 cites Representative Geochemical analyses. These data are extremely helpful when earth scientists are trying either to approach the problems or compare geochemical and/or geophysical data in igneous rocks or gather conclusions , as Age , whole rock geochemistry and petrology are of great importance in comparative geology, synthesis and interpretation.

Furthermore , taking into consideration that Hellas (Greece) is located on active Plate Margins between Eurasian and African Plates, is a land with active volcanism delineated by active volcanoes with high enthalpy geothermal potential and the Chapter of the book on the South Aegean Arc South Aegean Arc and volcanic risk volcanic risk in the chapter on Synthesis

Synthesis, provides directive information towards this Arc but also gives the "message" on careful steps towards man' s intervention in sensitive geotectonic environments such as active volcanic terrains.

By reviewing the book "The igneous Rocks of Greece" , it may derive in another book (!) as the plentity of data cited there , will trigger the mind of Earth Scientists to think a cascade of "new" things and new ideas on Igneous Rocks and Geology of an area in general. We thank Georgia and David , David and Georgia for this monumental amount of work on the Igneous Rocks of Greece.

Oryktologica Nea-News on Minerals

Rev.: Geological Magazine vol. 140/3 -- 2003 top ↑

This comprehensive 450-page volume (including references, appendices and index) would normally be expected to be produced as an edited volume with a variety of authors handling their own areas of expertise. Yet this has been produced by a Canadian `wife & man' team alone (the first author being a Greek national), so it is quite a remarkable feat, considering the amount of ground they have had to cover, but eased I suppose by frequent summer visits to Greece.

Greece may have been home to one of the oldest civilizations in Europe, but geologically it was one of the last pieces of continental Europe to accrete ­ and it is still accreting. Igneous rocks, dominantly of Mesozoic to Recent age, but including pre-existing fragments, form an important part of the accretion process. These igneous rocks, the associated metasediments, plus the intriguing tectonics, have attracted researchers from many parts of Europe and further afield, seduced by the excellent exposures. In fact Greece has probably one the highest proportion of foreign researchers of any European country; now these researchers will have to read this book just to summarize the geology adequately ­ or synthesize many of the 1240 references themselves!

After a brief introduction culminating in a summary of the plate-tectonic evolution of Greece, the rest of the book is divided into age-related chapters: (2) Late Palaeozoic plutonism and volcanism, (3) Triassic rifting and volcanism, (4) Jurassic Pindos ophiolites and melanges, (5) Mesozoic ocean crust in NE Greece, (6) Cretaceous ophiolites and subduction complexes in central and southern Greece, (7) Early Tertiary igneous rocks of Macedonia and Thrace, (8) Early Miocene volcanism in the NE Aegean, (9) Miocene plutonism in the Cyclades, (10) Miocene­Quaternary volcan- ics of central and northern Greece, and (11) the modern South Aegean Arc. In each case the individual regions or islands are discussed, and on the whole due weight is given to the ideas and concepts of the initial researchers on the subject, backed up by a collection of nearly 330 representative major, trace and REE analyses and isotopes and supported by over 280 maps and geochemical plots. At the end of each chapter is a synthesis section where the authors try to offer a coordinated viewpoint of the igneous evolution of Greece (mostly in a plate-tectonic framework at each stage), and try to develop their own viewpoint.

If you wanted a condensed view of the last 25 Myr history of Greece in petrological/geochemical terms, you could consult the authors' 2001 paper in the Geological Magazine, and that's the long and the short of it ­ of course, the long story is much more interesting. The book is subtitled `The anatomy of an orogen', but the history of Greece is different from an orogen such as the Alps, in having appreciable amounts of magmatic accretion and tectonic accretion of subducted sediments in the overall process, in addition to one of the best examples of crustal back-arc extension in the Aegean itself. It's the interplay between these processes that makes Greece a fascinating place to work in, to try and unravel them.

John Tarney

Geological Magazine vol. 140/3 -- 2003

Analyse d'ouvrage: Géochronique no. 88, 2003, p. 44 top ↑

Le volume consacré aux roches ignées de la Grèce par G. Pe-Piper et D. Pipper est un ouvrage important de près de 600 pages et de 284 figures qui analyse les roches ignées de l'orogène des Hellénides et les situe dans le contexte géodynamique de la chaîne. Il comporte 12 chapitres qui concernent le plutonisme et le volcanisme du Paléozoïque supérieur, le volcanisme du rifting triasique, les ophiolites et les mélanges du bassin océanique du Pinde, la croûte océanique mésozoïque de la Grèce du NE (Vardar), les ophiolites crétacées et la subduction en Grèce centrale et méridionale et une étude détaillée du magmatisme cénozoïque (5 chapitres).

De façon générale, une synthèse des données pétrologiques, géochimiques et radio-chronologiques est présentée dans chaque chapitre et est confrontée aux données structurales et stratigraphiques pour conduire à une critique constructive des reconstructions paléogéographiques proposées par les auteurs antérieurs et à un choix raisonnable de propositions. Il est hors de propos de résumer un tel ouvrage dans une brève analyse de celui-ci. Je noterai simplement quelques points importants soulevés par les auteurs. Le magmatisme du Paléozoïque supérieur, peu représenté dans les Hellénides, est considéré comme lié à une subduction et les auteurs concluent en faveur d'une origine des blocs apulien, pélagonien et rhodopien proche de la marge gondwanienne plutôt que d'une marge européenne. Une discussion détaillée est menée sur le rifting triasique qui conduit les auteurs à envisager l'existence possible de deux océans subductants l'un, la Paléothétys, à l'arrière duquel l'océan du Vardar aurait pu s'ouvrir comme un bassin d'arrière-arc, l'autre, séparant le Gondwana de l'Apulie, à l'arrière duquel se serait ouvert le bassin d'arrière arc du Pinde. L'étude du magmatisme de la zone du Vardar conduit les auteurs à considérer celle-ci comme étant formée de deux bassins à croûte océanique séparés par un arc insulaire. Le chapitre 7 est consacré à la question toujours débattue des ophiolites crétacées. Par comparaison avec les ophiolites crétacées des Taurides, il est suggéré que les ophiolites d'Eubée et de Crête peuvent être d'âge crétacé supérieur et qu'elles puissent s'être formées au-dessus d'une zone de subduction qui s'est terminée avec la collision éocène des Cyclades. Le volcanisme et le plutonisme oligocène (chap. 7), d'origine inconnue, précèdent un plutonisme du Miocène inférieur qui, lui, est clairement lié à une extension se manifestant en Égée par une tectonique de failles de détachement reconnue par de nombreux auteurs. Il est considéré comme le résultat d'une subduction du bloc apulien sous le bloc pélagonien suivie d'une collision continentale et semble se poursuivre au Miocène moyen sous des conditions transpressives. Enfin, le volcanisme miocène-quaternaire est abordé dans deux chapitres (chap. 10 et 11). Il est classiquement considéré comme le volcanisme d'arrière-arc de l'Arc Égéen avec un changement fondamental du style tectonique lié à la collision Arabie / Eurasie, à l'extrusion de l'Anatolie le long de la faille nord-anatolienne qui s'ensuit et probablement au début de la rotation horaire et anti-horaire, respectivement des branches occidentale et orientale de l'Arc égéen. Ce ne sont là que quelques questions parmi les nombreuses soulevées par les auteurs. Un travail d'une telle importance ne peut pas être exhaustif et les lecteurs ne seront pas tous d'accord avec toutes les propositions faites mais chacun trouvera dans cet ouvrage une synthèse assez complète des données publiées et une critique constructive des nombreux modèles structuraux et géodynamiques proposés pour rendre compte de l'histoire des Hellénides sans toutefois proposer une anatomie définitive de cette chaîne. Une compilation des données est rassemblée dans deux appendices [I. Géochronologie des roches ignées (13 p.), II. Analyses géochimiques significatives (29 p.)]. Une bibliographie abondante (~1 200 références) est aussi une source de renseignements utile ; je regrette seulement que le travail de précurseur de J.H. Brunn (1956) sur les ophiolites du Pinde n'y soit pas mentionné.

Ce volume consacré aux roches ignées de la Grèce est sans doute le plus complet publié à ce jour sur ce sujet. Il est non seulement le résultat d'une synthèse bibliographique impressionnante des travaux antérieurs mais surtout le fruit d'une expérience, d'une recherche personnelle conduite par les auteurs depuis longtemps, depuis plus de 30 ans pour l'un d'entre eux. Il est l'ouvrage de référence nécessaire pour tout chercheur qui s'intéresse au magmatisme des Hellénides et de façon plus générale à l'étude de cette chaîne.


Géochronique no. 88, 2003, p. 44

Contents top ↑

1. Introduction

1.1 Igneous rocks within the Hellenide orogen
1.2 Organisation of the book
1.2.1 Introduction
1.2.2 Rock and mineral nomenclature
1.3 Outline of the geology of Greece
1.3.1 Introduction
1.3.2 A brief history of geological studies in Greece
1.3.3 Terranes of the Hellenides
1.3.4 Pre-Mesozoic continental basement
1.3.5 Tectono-stratigraphy of the Hellenides
1.3.6 Mesozoic rifting and sedimentation
1.3.7 The ophiolites
1.3.8 Alpine orogenesis
1.3.9 Neogene extension and block rotation
1.3.10 Cenozoic igneous activity
1.4 The present geophysical fields
1.5 Plate tectonic evolution of Greece
2. Late Palaeozoic plutonism and volcanism
2.1 Introduction: the Hercynian basement of Greece
2.2 Plutons in the Pelagonian zone of Thessaly and western Macedonia: type example
2.2.1 Regional structural setting
2.2.2 Geology of the Verdikoussa pluton
2.2.3 Geology of other plutons of the Pelagonian zone
2.3 Probable Hercynian plutonism in northeastern Greece
2.3.1 Vardar zone
2.3.2 Serbo-Macedonian and Rhodope zones
2.3.3 Basement rocks of western Anatolia
2.4 Hercynian basement rocks in southern Greece
2.4.1 Cyclades islands
2.4.2 Crete, Dodecanese and the Peloponnese
2.4.3 Attiki, Othris, Evia and Chios
2.5 Geology of volcanic rocks of the Karakaya suture zone
2.5.1 Introduction
2.5.2 Geological setting of Chios
2.5.3 Geological setting of Lesbos
2.5.4 The possible extension of the Karakaya suture to Greece
2.6 Petrography and geochemistry
2.6.1 Petrography of the granitoid rocks
2.6.2 Petrography of the mafic plutonic rocks
2.6.3 Geochemistry of the granitoid rocks and associated mafic rocks
2.6.4 Geochemistry of the Hercynian amphibolites
2.6.5 Geochemistry of the Palaeozoic volcanic rocks of Chios
2.7 Synthesis of the regional setting of Carboniferous plutons
3. Permo-Triassic rifting and volcanism
3.1 General geologic history of the early Mesozoic of Greece
3.1.1 Introduction: the creation of Neotethys
3.1.2 Plate-tectonic interpretation of Triassic rifting
3.1.3 Permian-Triassic rifting in Greece
3.2 Othris and north Evia: a type example
3.2.1 Introduction
3.2.2 Geologic setting of the early to mid-Triassic early-rifting volcanic rocks
3.2.3 Geologic setting of the Carnian volcanic rocks of Othris
3.2.4 Geologic setting of ?late Triassic - ?Jurassic ocean-floor of Othris and Evia
3.2.5 Petrography and geochemistry of the early to mid Triassic alkaline volcanic rocks
3.2.6 Petrography and geochemistry of mid- to late Triassic subalkaline volcanic rocks
3.2.7 Petrography and geochemistry of the late Triassic - early Jurassic ocean floor rocks
3.2.8 Regional implications of the Othris - Evia transect
3.3 Geology of Triassic volcanic rocks of Apulia on the margin of the Pindos ocean
3.3.1 Phyllite-Quartzite Unit
3.3.2 Western margin of the Pindos zone
3.3.3 Pindos zone of Crete and the south Aegean islands
3.3.4 Triassic volcanic rocks within mélanges
3.3.5 Kerassies - Milea ophiolite zone
3.3.6 Parnassos zone
3.4 ?Triassic meta-igneous rocks of the Cyclades, south Evia and Thessaly
3.4.1 Introduction
3.4.2 Basal Unit of the Cyclades: volcanic rocks
3.4.3 Basal Unit of the Cyclades: granites
3.4.4 Intermediate Unit of the Cyclades
3.4.5 The Styra-Ochi unit of southern Evia
3.4.6 The blueschist units of Thessaly
3.5 Geology of Triassic volcanic rocks of Pelagonia
3.5.1 The Pelagonian nappes of mainland Greece
3.5.2 Upper Unit of the Cyclades and Pelagonian nappes of the eastern Aegean islands
3.6 Geology of Triassic volcanic rocks of the Vardar and Serbo-Macedonian zones
3.6.1 Introduction
3.6.2 Circum-Rhodope belt
3.6.3 Summary
3.7 Petrography and geochemistry
3.7.1 Introduction
3.7.2 Subalkaline basaltic andesite and related rocks
3.7.3 Basalt and andesite of shoshonitic or calcalkaline affinity
3.7.4 Alkaline basalt
3.7.5 MORB-related rocks
3.7.6 Subalkaline rocks with boninitic affinities
3.7.7 Rhyolite
3.8 Regional synthesis
3.8.1 Stratigraphic and paleogeographic distribution of volcanic rocks
3.8.2 The relationship of Triassic volcanism to rifting and mantle plumes
3.8.3 The role of subduction and back-arc spreading in the genesis of Triassic volcanic rocks
4. Jurassic Pindos ocean basin: ophiolites and melanges
4.1 Introduction: the western ophiolite belt of Greece
4.2 Type example: the Vourinos and Pindos ophiolites
4.2.1 Geology of the Vourinos ophiolite
4.2.2 Geology of the Pindos ophiolite
4.2.3 Petrography and geochemistry of the Vourinos and Pindos ophiolites
4.2.4 The significance of sub-ophiolitic mélange
4.2.5 Emplacement of the Vourinos and Pindos ophiolites
4.3 The western Jurassic ophiolite sequences and related rocks of the Pelagonian zone
4.3.1 Introduction
4.3.2 Ophiolites of northwestern Thessaly and western Macedonia
4.3.3 Ophiolites of Othris
4.3.4 Ophiolites of Evia and Pelion
4.3.5 Ophiolites of Beotia and Attiki
4.3.6 Ophiolites of Argolis
4.3.7 Melanges beneath the western ophiolite belt
4.3.8 The record of volcanism in the foreland basin created by the obducting ophiolites
4.3.9 Evidence for ophiolites in detrital conglomerates of the external Hellenides
4.3.10 Tectonic slices in the Pindos basin of the Peloponnese
4.3.11 Clay-mineral and manganese evidence for volcanic activity
4.3.12 Ultramafic and mafic rocks of the lower nappe of the Phyllite-Quartzite series
4.4 Meta-ophiolites in the Intermediate Unit of the Attico-Cycladic complex and possible correlatives in Thessaly
4.4.1 Introduction
4.4.2 Cyclades
4.4.3 Blueschist unit of Thessaly
4.5 The "Ophiolite nappe" of Crete, the south Aegean islands, and the Upper Unit of the Cyclades
4.5.1 Introduction
4.5.2 Crete and Gavdos
4.5.3 Karpathos and Rhodos
4.5.4 Ophiolites of the Upper Unit of the Cyclades
4.6 Petrography and geochemistry of the western ophiolite belt
4.6.1 Volcanic and dyke rocks
4.6.2 Plutonic rocks
4.6.3 Ultramafic rocks
4.6.4 Chromite
4.6.5 Hydrothermal mineralisation
4.7 Synthesis: distribution and origin of Jurassic oceanic igneous rocks
4.7.1 Oceanic environments revealed by geochemical studies
4.7.2 What oceans did the ophiolites come from?
5. Mesozoic ocean crust of northeast Greece
5.1 Tectonic and stratigraphic setting of northeastern Greece
5.2 Mesozoic igneous rocks of the Vardar zone
5.2.1 Almopias subzone: geological summary
5.2.2 Ophiolites of the eastern Almopias subzone
5.2.3 Dismembered ophiolites of the central Almopias subzone
5.2.4 Ophiolites of the western Almopias subzone
5.2.5 Eastern Thessaly and Pelion
5.2.6 Eohellenic Unit of the islands of the northwest Aegean Sea
5.2.7 Païkon subzone
5.2.8 Peonias subzone: overview
5.2.9 Guevgueli ophiolites
5.2.10 Granites of the Peonias subzone
5.2.11 `tip-Axios massif
5.2.12 Thessaloniki ophiolites
5.2.13 Oreokastron ophiolite
5.2.14 Aspro Vrissi Formation
5.2.15 Chortiatis magmatic suite of northern Chalkidiki
5.2.16 Chortiatis magmatic suite of Sithonia
5.2.17 Sithonia ophiolitic rift complex
5.2.18 The circum-Rhodope belt in Samothraki
5.2.19 The circum-Rhodope belt in Thrace
5.2.20 Ophiolites of the northeast Aegean
5.3 Mesozoic igneous rocks of the Rhodope and Serbo-Macedonian zones
5.3.1 Outline of the geology of the Rhodope and Serbo-Macedonian zones
5.3.2 Geology of meta-igneous rocks of the Rhodope zone
5.3.3 Geology of meta-ophiolites and amphibolites of the Serbo-Macedonian zone
5.3.4 Granites of the Serbo-Macedonian zone
5.4 Petrography and geochemistry of Mesozoic igneous rocks of northeast Greece
5.4.1 Ophiolitic rocks of the Almopias subzone
5.4.2 Ophiolitic rocks of the eastern Peonias subzone
5.4.3 Guevgueli ophiolites
5.4.4 Sithonia ophiolites
5.4.5 Ophiolitic rocks of Samothraki and Thrace
5.4.6 Ophiolitic rocks of the Rhodope and Serbo-Macedonian zones
5.4.7 Ophiolitic rocks of Lesbos
5.4.8 Subduction-related volcanism of the Païkon subzone
5.4.9 The Chortiatis suite
5.4.10 Jurassic dykes and granites of the Vardar zone
5.4.11 Older granites of the Serbo-Macedonian zone
5.5 Regional synthesis
5.5.1 Regional tectonic framework
5.5.2 The ophiolites of the Vardar zone and the circum-Rhodope belt
5.5.3 Tectonic evolution of the Serbo-Macedonian and Rhodope zones
5.5.4 A plate tectonic model
6. Cretaceous ophiolites and subduction in central and south Greece
6.1 Late Cretaceous ophiolitic rocks
6.1.1 Late Cretaceous oceanic crust in central Evia
6.1.2 Probably latest Cretaceous oceanic crust in the Sporades, Pelion, Skyros and Macedonia
6.1.3 The Ermioni Complex of Argolis
6.1.4 Cretaceous oceanic crust in the south Aegean islands
6.1.5 Stratigraphic distribution of manganiferous sediments in the Pindos basin
6.1.6 Petrography and geochemistry of the ophiolitic rocks
6.2 Cretaceous subduction/accretion complexes
6.2.1 Crete
6.2.2 Cyclades
6.2.3 Possible evidence of Cretaceous subduction in the blueschist belt of Evia and the Cyclades
6.2.4 Petrography and geochemistry of the subduction complexes
6.3 Regional synthesis
7. Early Tertiary plutonism and volcanism of Macedonia and Thrace
7.1 Cenozoic evolution of the Aegean region
7.1.1 Introduction
7.1.2 Regional evidence for extension
7.2 Pre-Oligocene plutons of the Serbo-Macedonian and Rhodope zones
7.2.1 Introduction
7.2.2 Sithonia plutonic complex: a type example of Eocene plutonism in Chalkidiki
7.2.3 Ouranoupolis and other Eocene plutons of Chalkidiki
7.2.4 The Elatia-Skalote pluton
7.2.5 Other plutons of uncertain age
7.3 Oligocene plutonism
7.3.1 Introduction
7.3.2 Xanthi pluton: type example of Oligocene plutonism
7.2.3 Northeastern Vrondou pluton
7.3.4 Smaller Rhodope plutons
7.3.5 Plutons of central Thrace
7.3.6 Oligocene porphyry intrusions of the Serbo-Macedonian zone
7.4 Oligocene volcanic rocks of the Rhodope zone and Thrace
7.5 Early Miocene extension-related plutonism
7.5.1 Kavala pluton
7.5.2 Southwestern Vrondou pluton
7.6 Petrography and geochemistry
7.6.1 Eocene plutons of Chalkidiki
7.6.2 Elatia-Skaloti pluton
7.6.3 Oligocene plutons and volcanic rocks
7.6.4 Miocene plutons and hypabyssal rocks
7.6.5 Isotopic data
7.6.6 Petrogenesis of the Eocene-Miocene igneous rocks
7.7 Regional synthesis
8. Early Miocene volcanism of the northeast Aegean
8.1 Lesbos: a type example
8.1.1 Regional geologic setting
8.1.2 Geology of Lesbos
8.1.3 Stratigraphic and spatial variations in geochemistry of Lesbos
8.1.4 Isotope geochemistry of Lesbos
8.1.5 Mineralogy of the volcanic rocks of Lesbos
8.2 The geology of other volcanic centers
8.2.1 Limnos
8.2.2 Agios Evstratios
8.2.3 Samothraki
8.2.4 Anatolia
8.3 Petrography and geochemistry of the other volcanic centers
8.3.1 Volcanic rocks
8.3.2 Plutonic rocks
8.4 Regional synthesis
9. Miocene plutonism in the Cyclades
9.1 The general setting of Miocene igneous activity in the Cyclades
9.1.1 Introduction
9.1.2 The metamorphic history of the Cyclades
9.2 The central Cyclades granites
9.2.1 Geology of Naxos
9.2.2 Petrography and geochemistry of Naxos
9.2.3 Geology and structure of Delos
9.2.4 Petrography and geochemistry of Delos
9.2.5 Tinos
9.2.6 Mykonos
9.2.7 Paros and adjacent islands
9.2.8 Ikaria
9.3 The western Cyclades granodiorites
9.3.1 Serifos
9.3.2 Lavrion
9.4 The eastern Cyclades monzonites
9.4.1 Kos
9.4.2 Samos
9.5 Regional variation in the plutonic rocks of the Cyclades
9.5.1 Synthesis of age of plutonism
9.5.2 Regional trends in petrography and geochemistry of the plutons
9.5.3 Regional trends in isotopic variation
9.6 Mid-Cenozoic minor volcanism in the south Aegean
9.6.1 Oligocene flysch of Rhodos
9.6.2 Rhyolitic pyroclastic rocks of Miocene-Pliocene age
9.6.3 The record of volcanism from tephra deposits
9.7 Synthesis: petrogenesis and tectonic setting
9.7.1 Petrogenetic synthesis
9.7.2 Tectonic setting
10. Miocene to Quaternary volcanic rocks of central and northern Greece
10.1 Introduction: the Aegean Sea as a back-arc basin
10.2 Geology of individual volcanic centers
10.2.1 Mid-Miocene of the eastern Aegean
10.2.2 Mid-Miocene of the central Aegean
10.2.3 Upper Miocene of the southeast Aegean Sea
10.2.4 Euboecos
10.2.5 The north Aegean Sea and Macedonia
10.2.6 Western Anatolia and eastern Thrace
10.2.7 Geothermal activity
10.3 Petrography and geochemistry
10.3.1 General geochemical character of the back-arc volcanic rocks
10.3.2 Mineralogy
10.3.3 Isotopic variability
10.3.4 Basalt
10.3.5 Trachyte and related rocks
10.3.6 Adakite
10.3.7 The chronological sequence of lavas
10.4 Synthesis: petrogenesis and tectonic setting
10.4.1 Petrogenetic synthesis
10.4.2 Tectonic interpretation of regional variability
11. The South Aegean Arc
11.1 The geologic setting of the major volcanic centers
11.1.1 Introduction
11.1.2 The marine tephrochronology record
11.1.3 Volcanic centres of the Saronic Gulf
11.1.4 The Milos group
11.1.5 Santorini
11.1.6 Volcanic centres of the southeast Aegean
11.1.7 The relationship of tectonism and volcanism
11.2 Petrography and geochemistry
11.2.1 General geochemical character of the volcanic rocks of the South Aegean Arc
11.2.2 Isotopic variability in the volcanic rocks of the South Aegean Arc
11.2.3 Petrological evolution through time at centres of the Saronic Gulf and Milos
11.2.4 Petrological evolution through time at Santorini
11.2.5 Petrological evolution through time at Nisyros and Kos
11.2.6 The evolution and eruption of magma chambers
11.2.7 Processes of geochemical evolution
11.3 Synthesis: petrogenesis and tectonic setting
11.3.1 Petrogenetic synthesis
11.3.2 The role of subduction and extension
12. Synthesis
12.1 Introduction
12.2 General themes in the geological evolution of Greece
12.2.1 Late Palaeozoic assembly of continental fragments
12.2.2 Permian-Triassic rifting
12.2.3 Mesozoic - Cenozoic history of the Atlantic Ocean and its control on events in Greece
12.2.4 Ophiolites
12.2.5 Ocean closure and collision of continental fragments
12.2.6 Cenozoic extension and southward migration of the subduction zone.
12.3 Geochemical and isotopic evolution of the sub-continental mantle
12.3.1 Pb isotopes
12.3.2 Sr and Nd isotopes
12.3.3 Regional interpretation of isotopic variability
12.4 Economic and societal aspects of igneous activity
12.4.1 Mineral resources
12.4.2 Geothermal resources
12.4.3 Radon and other geomedical hazards
12.4.4 Volcanic risk
Appendix 1. Geochronology of igneous rocks
Appendix 2. Representative geochemical analyses
Appendix 3. Sources of data for figures