cover

Karl Heinrich Hartge; Rainer Horn:

Essential Soil Physics

An introduction to soil processes, functions, structure and mechanics

Ed.: Robert Horton; Rainer Horn; Jörg Bachmann; Stephan Peth

2016. 391 pages, 186 figures, 24 tables, 17x24cm, 1040 g
Sprache: English

ISBN 978-3-510-65288-4, bound, Preis: 72.00 €

Auf Lager und sofort verfügbar

Bestellschein

BibTeX Datei

Schlagworte

soilhydrologystabilityerosionsoil mechanicsgas budgetalbedo

Inhalte

Synopsis nach oben ↑

Also available in softcover

Soils are the porous skin of the Earth with variable and complex structures composed of solid, liquid and gaseous phases. Being in close contact with the atmosphere, biosphere hydrosphere, and lithosphere, soils fulfill numerous functions as a filter, buffer, habitat for organisms and resource for raw materials and food rendering them as the basis for life on our Planet. Soils are subject to continuous transformations and their dynamic nature is important for the interaction of biological, biogeochemical and physical processes. At the same time soils are vulnerable and affected by human activity and often subject to degradation.

This textbook (based on the 4th, German language edition) introduces the reader gently but comprehensively to soil physical processes. The authors discuss both the origin and dynamics of soil physical properties and functions - volume-mass relations of the solid, water and gas phases, grain and pore size distributions, permeability and storage capacity for water, gases and heat - and finally soil deformation and strength in relation to mechanical and hydraulic stresses resulting in structural changes through compaction, kneading, slaking and soil crusting. Unlike other soil physics textbooks, soil mechanical properties are herein described in great detail, because otherwise it is impossible to understand and adequately quantify soil stability and the effects of soil deformation on soil physical functions.

The book treats the physics of water, gas and heat movement in soils and interactions with the solid phase at various scales and other factors in detail -- because these are considered the ultimate basis of any model of soil behavior.

Threats to soils worldwide ultimately endanger food security for a growing world population. Because of this, the effects of soil use and degradation on transport processes, soil stability and pore functions are discussed, and options for soil protection, conservation, and amelioration are addressed.

The authors close a gap between general soil science texts and very specialized treatments of foundation engineering by integrating the concepts of soil mechanics to achieve a comprehensive description of soil physical behavior. Traditional soil physics topics, such as soil – water – plant relations, soil hydrology and gas, heat and field water cycles are complemented by soil rheology, physicochemical and amelioration sciences. Well-known and recent advances in analytical approaches and methods are well explained to be of use to persons interested in improving plant growth and optimizing crop yield.

This book is valuable for researchers, upper-level undergraduate students, and graduate students of agronomy, soil science, horticulture, geo-sciences, environmental science, landscape architects and everybody interested in understanding the intricate physical processes which control and modify soil functions. Problems are provided at the end of each chapter to enable readers to develop soil physics related problem solving skills.

Bespr.: forstarchiv 88, Heft 1 (2017) nach oben ↑

Das deutschsprachige Standardlehrbuch für Bodenphysik „Hartge/ Horn: Einführung in die Bodenphysik“ wurde in diesem Jahr als englischsprachige Ausgabe beim selben Verlag aufgelegt. Auf der Basis der überarbeiteten 4. Auflage wurde eine vollständige Übertragung ins Englische angefertigt. Neben den drei deutschen Autoren Jörg Bachmann, Rainer Horn und Stephan Peth ist als Erstautor der englischen Ausgabe der renommierte amerikanische Bodenphysiker Robert Horton von der Iowa State University dazugekommen. Er ist zusammen mit William A. Jury der Verfasser von „Soil Physics“, ebenfalls einem Standardlehrbuch zur Bodenphysik im englischsprachigen Raum, das zuletzt 2004 in der 6. Auflage bei Wiley erschienen ist.
Die Übertragung ins Englische erfolgte mehr oder weniger als wörtliche Übersetzung. Sowohl die Gliederung als auch die Formeln und Abbildungen entsprechen einer 1:1 Transkription. Ergänzt wurden die einzelnen Kapitel um die ebenfalls im englischsprachigen Raum üblichen „Problems“. Dabei handelt es sich um Aufgaben samt Lösungen, die der Leser im Anschluss an den gebotenen Lehrstoff nutzen kann, um das neue erworbene Wissen anzuwenden. Zusätzlich wurde auch das Literaturverzeichnis erweitert, und darin enthaltene Fehler der 4. Auflage wurden korrigiert. Es finden sich jetzt deutlich mehr Hinweise auf vertiefende und weiterführende Literatur, was für den Leser vorteilhaft ist. Auch hier zeigt sich die „Handschrift“ des neuen Erstautors.
Die englische Ausgabe behandelt damit ebenso alle wesentlichen Eigenschaften und Funktionen von Böden, die sich aus dem klassischen Drei-Phasen-System ableiten lassen. Es beginnt mit der festen Phase, den Größenverteilungen und Formen der Bodenteilchen (Kap. 1) und dem aus ihrer Anordnung resultierenden Gefüge und Porensystem (Kap. 2). Die Bodenmechanik in Kapitel 3 beschreibt die Veränderung des Bodengefüges und Porensystems unter dem Einfluss von Druck und Wasser. Die folgenden Kapitel 4 bis 6 behandeln die wesentlichen Wechselwirkungen der festen Bodenteilchen mit dem Wasser, den Kräften, denen das Wasser ausgesetzt ist, und der Wasserbewegung im Boden. Die Grundlagen zur Beschreibung des Gashaushalts finden sich in Kapitel 8, während die Wechselwirkung des Bodens mit der Umgebung in Kapitel 9 beschrieben wird. Was das Buch von anderen klassischen englischsprachigen Lehrbüchern – wie z. B. das von Jury und Horton – unterscheidet, sind die insbesondere auf die landwirtschaftliche Praxis ausgerichteten Kapitel 10 und 11, die sich mit Befahrung und Erosion beschäftigen. Im vorletzten Kapitel 12 finden sich die Grundlagen für den Lösungs- und Stofftransport in Böden, und in Kapitel 13 wird ein Ausblick auf zukünftige Entwicklungen der Bodenphysik gegeben.
Die englische Ausgabe ist damit ebenso wie die deutsche eine sehr gut geschriebene und ausgezeichnet gestaltete Einführung in die Bodenphysik und als Basislehrbuch für Studierende unterschiedlicher Fachrichtungen gut geeignet.

Martin Jansen, Göttingen

forstarchiv 88, Heft 1 (2017), S. 24

Bespr.: VDLUFA Mitteilungen 01/2017 | Seite 26 nach oben ↑

In der Vergangenheit war es üblich, englischsprachige Fachbücher ins Deutsche zu übersetzen. Die Autoren um Rainer Horn gehen den umgekehrten Weg und legen eine Übersetzung des bereits in der 4. Auflage erschienenen Lehrbuches „Einführung in die Bodenphysik“ vor. Als Co-Autor konnten sie Robert Horton von der Iowa State University gewinnen.
Die Autoren geben zunächst eine Einführung in die grundlegenden physikalischen Prozesse im Boden. Es werden die maßgeblichen Prozesse der Bewegung von Wasser, Gasen und Wärme sowie die Interaktionen mit der festen Phase auf verschiedenen Skalenebenen ausführlich besprochen. Im Weiteren wird der Einfluss physikalischer Parameter (z. B. Körnung, Dichte, Durchlässigkeit, Druckbelastung) auf die Stabilität und Ertragsfähigkeit von Böden behandelt sowie Möglichkeiten der Bodenverbesserung und des Bodenschutzes diskutiert.
Aufbauend auf den ersten beiden Kapiteln zu Körnung und Gefüge werden in den folgenden Abschnitten die mechanisch-hydraulischen Kräftesysteme, die Wechselwirkungen zwischen Wasser und Boden (einschl. Flockung und Peptisation sowie Quellung und Schrumpfung), die Verbreitung und Hydrostatik des Bodenwassers, die Wasserbewegung und die Gasphase im Boden sowie das thermische Verhalten des Bodens dargelegt. In weiteren Kapiteln werden der Pflanzenstandort und seine physikalische Veränderung, Gesetzmäßigkeiten der Erosion sowie Lösungstransport und Filterprozesse in Böden erläutert. Den Abschluss bildet das Kapitel über Perspektiven der Bodenphysik. Positiv hervorzuheben sind die zahlreichen teils farbigen Abbildungen, das ausführliche Literaturverzeichnis sowie die Auflistung wichtiger Maßeinheiten, Abkürzungen, Umrechnungen und Ableitungen.
Der Titel des Buches sollte nicht darüber hinwegtäuschen, dass zum Verständnis und zur Vertiefung grundlegendes bodenphysikalisches Wissen vorausgesetzt wird. Es handelt sich weniger um ein Nachschlagewerk als ein didaktisch gut aufgebauter Begleiter für das (Selbst-)Studium. Letzteres wird gefördert durch Aufgaben am Ende jeden Kapitels sowie durch entsprechend Lösungen am Schluss des Buches. Mit der vorliegenden Neuerscheinung wird eine Lücke geschlossen, die infolge des zunehmenden Angebotes an englischsprachigen Vorlesungen und Seminare an den Universitäten entstanden ist.

Hans-Georg Brod, Nienburg

VDLUFA Mitteilungen 01/2017 | Seite 26

Book Review: International Agrophysics Vol. 31, Issue 1 nach oben ↑

Essential Soil Physics – An introduction to soil processes, functions, structure and mechanics was edited by Robert Horton, Rainer Horn, Jörg Bachmann, and Stephan Peth, and published by Schweizerbart Science Publishers in 2016. The book within 391 pages contains Preface, Introduction, 13 Chapters, References, as well as tables of Commonly used units and conversion Factors and a Meaning of Abbreviations record.
Comprehensive knowledge of the texture of soil and its physical, chemical and biological properties is essential in planning its proper use for human needs in the context of sustainable development. Such knowledge is also vital for the rational use of production space of plants, their regionalization, developing business plans, stacking crop rotation and tillage setting. Soil is a distributor of water, takes precipitation, partly serves as water storage reservoirs, partly passes it into the deeper layers to turn it into under ground water supplies, and partly evapotranspirates water back to the atmosphere. Knowledge about soil characteristics is also indispensable when it comes to description, interpretation and forecasting the course of analysing and modelling its physical, chemical and biological processes.
The book presents very complex approach to description of soil as an integral part of the environment. In the first two chapters of the book, the authors present the texture and structure of soil from the perspective of its basic physical properties, whereas mechanical and hydraulic forces in soils are described in Chapter 3. This part of the book is the basis for further considerations of other phenomena occurring in soil system. Next three chapters describe the physics of soil water. The authors devote a lot of attention to interactions between water and soil, and also water movement within the soil in both saturated and unsaturated zones. In Chapter 7, 8 and 9 the reader can find a very detailed presentation of the phenomena of gas exchange in soil, its thermal properties, as well as the balance and common transport of water, heat and gas within soil. The following chapter is the description of soil as the habitat of plant growth and development. In Chapter 11 and 12, the authors describe the phenomena of erosion in soil and solute transport and filtration within it.
Each of the 12 chapters ends with at least one practical problem concerning the presented material, which facilitates the better understanding of the presented theory. The final chapter offers a list of potential solutions to the discussed problems and the authors thoughts on the further development of the physics of the soil. The book contains many helpful figures and tables which highly raise its educational value. Overall, the book definitely leaves the reader satisfied with the examined matter and makes a significant contribution to knowledge of the scientific community.

Cezary Sławiński

International Agrophysics Vol. 31, Issue 1

Book Review: Soil News Issue #2 Vol # 65, May 2017 nach oben ↑

“Essential soil physics” is the first English language edition of Hartge and Horn’s book which has had four previous editions in German. The book is also available in Spanish. I found this an excellent and accessible book which meets its stated target of readers who have a “knowledge of soil science and are interested in understanding the underlying physical processes which control soil functions to, ultimately, improve soil management and use.”
Overall I found this a very readable, practical, and useful summary of the main tenants of soil physics including: soil texture and structure; soil mechanics; soil water and air content and movement; thermal behaviour; water, heat, and gas budgets of soils; plant habitats; soil erosion; and solute transport. Key literature is referenced for readers who need further detail in a particular area. The writing is clear and concise and all the major soil physical topics are explained without getting bogged down in the detail of the derivation of formulas. The practical applications related to topics such as drainage and irrigation scheduling were covered. Each chapter included a set of practical problems, with clear solutions given in an appendix, which would greatly aid the motivated readers understanding of the topics discussed. I particularly liked the inclusion of a chapter on “Mechanical and hydraulic forces in soils” that crossed over into engineering soil mechanics, an important area that is not always well covered in soil physics texts which tend to focus primarily on agronomic applications. In the chapter on thermal behaviour of soils I found the treatment of soil freezing and thawing processes particularly insightful as, though mainly written in the context of the winter freezing of soils in continental Europe and USA, it could be applied to the Antarctic cryosol situation.
A final chapter on the future of soil physics provided some interesting perspectives. Of interest it pointed to the potential of “biological engineering” the study of the connection of physical and biological processes in soils, particularly in the thin moisture films on soil surfaces. The concluding comment that “Intensive research in the past decades has shown, however, that simple models, oblivious of the actual processes taking place in soils, are unable to predict or even approximate future changes in soils … or predict the consequences for ecosystems” provides the basis of the challenge for future work in soil physics.
For a working soil scientist I recommend this book as a reference to own. I will also recommend our university library acquire a copy. I think it a useful text for graduate students to use however I suspect that only the most motivated and mathematically literate of undergraduate students would cope with it – the book assumes a basic knowledge of soil science and mathematics. If there was an opportunity to run a focussed soil physics course this would certainly be a recommended, if not required, text. It is also a book I would recommend to civil engineering and geotechnical engineering students and practitioners.

Dr Megan Balks

Soil News Issue # 2 – Vol # 65 – May 2017

Book Review: Soil Science March 2017 Vol. 128 Issue 3 nach oben ↑

Wolters Kluwer Health, Inc. does not allow reproducing its review in its entirety but the review concluded the following:

"Compared with other familiar English-language soil physics text-books, this book provides expanded discussion of soil structure, and its importance is well integrated into treatment of most other topics. Particularly unique is that pore arrangement is discussed in contexts of both pedogenesis and shorter-term dynamic processes associated with water and gas redistribution. This emphasis offers readers insight on the complexity of processes occurring in field soils. Throughout the book, foreshadowing of concepts is also used in order to make ...
Overall, this textbook provides a new presentation of soil physics concepts for the English-language audience, many conceptual figures and examples that can provide useful references for course content, and a compliment of both core and less-commonly treated soil physics subject matter."

Soil Science: March 2017 - Volume 182 - Issue 3 - p 114

Book Review: Vadose Zone Journal Vol. 16, Iss. 5. 2017 nach oben ↑

Vadose Zone Journal does not allow reproducing its review in its entirety but the review concluded the following:

"Overall, Essentials in Soil Physics adds to the already available book material in soil physics by providing information beyond classical textbooks and nicely showing the interaction between soil mechanics and classical soil physics (soil hydrology). All chapters provide useful information, although some chapters or subsections seem to be a little bit unbalanced between complexity and simplicity, which is unavoidable given the diversity of soil physics aspects presented. The editorial team has to be commended for putting such diverse material together in a comprehensive textbook.
I would recommend this book to graduate and undergraduate students of soil physics, soil chemistry, and soil biology but also to professionals in these disciplines for lecture preparation."

Vadose Zone Journal Vol. 16, Iss. 5, 2017

Table of Contents nach oben ↑



Preface 9
Introduction 10
Soils: integral part of our environment 10
Soil characteristics 11



1 Grain size distribution: texture 13
1.1 Classification 13
1.1.1 Grain sizes 14
1.1.2 Grain shapes 16
1.1.3 Grain mixtures 17
1.2 Common soil textures and their origin 21
1.2.1 Equation of sedimentation 22
1.2.2 Separation processes 23
1.3 Spatial distribution of textures 25
1.4 Modification of grain size distributions in soils 26
1.5 Grain size distribution and other soil properties 27
1.6 Methods to measure grain size distributions 30
Problems Chapter 1 31



2 Soil structure and structural functions 33
2.1 Soil structure and internal morphology 33
2.2 Bulk density, particle density 35
2.3 Pore volume and void ratio 36
2.3.1 Theoretical quantities to describe pore volumes 37
2.3.1.1 Influence of grain size and shape on pore volume 37
2.3.1.2 Effect of particle size 38
2.3.2 Number of grain contacts 39
2.3.2.1 Relationship of contact number and pore volume fraction 40
2.3.2.2 Natural grain size distributions and aggregates 41
2.3.3 Influence of grain contact points on soil pedogenesis 41
2.4 Pore size distributions 44
2.4.1 Subdividing pore sizes 44
2.4.2 Shapes, sizes of pores, and modes of pore formation 47
2.4.3 Effects of pore size distribution on soil quality 48
Problems Chapter 2 48



3 Mechanical and hydraulic forces in soils 50
3.1 Stability and the spatial arrangement of grains 50
3.1.1 Forces and stresses in soils 50
3.1.2 Subdivision of the forces and stresses within soils 54
3.1.2.1 Particle weight 55
3.1.2.2 Loads transmitted by solid phases of soils 55
3.1.2.3 Weight (overburden) stresses transmitted within the solid phase 55
3.1.2.4 Forces between the surfaces of adjacent particles 56
3.1.3 Stresses in three-dimensional space 56
3.2 Soil strength: the balance of forces 57
3.2.1 Shear resistance, a soil property 57
3.2.1.1 Shear resistance of soils and their determination 57
3.3 Stress strain relationship and time-dependent settlement 63
3.3.1 Stress strain relationship in soils 63
3.3.2 Time dependent settlement behavior of soils 65
3.3.3 The meaning of neutral stresses during loading 66
3.4 Stress-, strain-, and deformation processes in three-dimensional space.68
3.4.1 Stress and strain in three-dimensional space 68
3.4.2 Stress propagation within soils 68
3.4.3 Base failure as the result of the active and passive Rankine state 71
3.5 Flow behavior of soils: stresses between individual soil particles 74
3.6 Influence of soil properties on shear resistance 79
3.7 Mechanical changes of soil structure 79
3.7.1 Effects of anthropogenic activities on soils 79
3.7.2 Effects of animal activity and plant growth 81
3.7.3 Freezing effects 83
3.7.4 Soil compaction in civil engineering and construction 83
Problems Chapter 3 84



4 Interactions between water and soil 86
4.1 Adsorption of water in soils 86
4.1.1 Adsorption mechanisms 86
4.1.2 Properties of water adsorbed on soil components 88
4.2 Flocculation and peptization of soil particles 89
4.3 Shrinkage of soils 91
4.3.1 Causes of soil shrinkage 91
4.3.2 Shrinkage in soils 94
4.4 Swelling of soils 95
4.4.1 Mechanisms of swelling: swelling pressure 96
4.4.2 Inhibition of swelling 99
4.5 Cracking up: crack formation in soils 100
4.6 Water as a factor of soil stability 103
4.6.1 Static water pressure 103
4.6.2 Flow pressure in soils 105
4.7 Wetting properties of soils 107
4.7.1 Causes and occurrence of inhibited wetting of soil particle surfaces 107
4.7.2 Contact angles and capillarity 108
4.7.3 Documenting wetting properties 111
4.7.4 Impact of wetting properties on the environmental and habitat functions of soils 113
4.8 Electrical flow potentials in soils 114
4.9 Aggregate shapes and functions 115
4.9.1 Natural aggregate-forming processes 116
4.9.2 Anthropogenic modification of soil aggregates 120
4.10 Effects of aggregate size, - shape and -age 120
Problems Chapter 4 122



5 Distribution and hydrostatics of soil water 123
5.1 Distribution and origin of water in soils 123
5.2 Forces in soil water 124
5.3 The groundwater surface as reference plane 126
5.4 Soil water potential 127
5.4.1 Total water potential and component water potentials 128
5.4.1.1 Matric potential Ψm 129
5.4.1.2 Gravitational potential Ψz 129
5.4.1.3 Osmotic potential Ψo 130
5.4.1.4 Overburden or load potential ΨΩ 130
5.4.1.5 Pressure potential ΨP 131
5.4.2 Combining component potentials 131
5.4.3 Instruments for measuring soil water potentials 132
5.5 Equilibrium water potential 134
5.6 Relationship between matric potential and water content 135
5.6.1 Effect of grain size distribution on the matric potential/water content relationship137
5.6.2 Influence of structure on the shape of the matric potential/water content relationship 137
5.6.3 Hysteresis of the matric potential/water content curve 139
5.6.4 Measuring matric potential / water content curves 139
5.6.5 Mathematical description of the matric potential–water content relationship 141
Problems Chapter 5 141



6 Movement of water within the soil 143
6.1 Water movement in water saturated soil 143
6.1.1 Fluid-dynamic phenomena in soils 143
6.1.2 Flow Fields 147
6.1.3 Boundary conditions and spatial limits of flow fields 147
6.1.4 One-dimensional flow 148
6.1.5 Two- and three-dimensional flows 150
6.2 Water movement in unsaturated soil 153
6.3 Transient flow 155
6.3.1 Hydraulic diffusivity 159
6.4 Hydraulic conductivity as a soil property 160
6.5 Vapor transport 168
6.6 Infiltration 169
6.7 Drainage 174
6.8 Evaporation 181
Problems Chapter 6 188



7 The gas-phase of soils 193
7.1 The energetic state of the gas phase of soils 193
7.2 Composition of the gas phase in soils 195
7.3 Transport processes in the gas phase of soils 196
7.3.1 Gas diffusion 197
7.3.2 Mass fluxes in the gas phase of soils 199
7.3.3 Redistribution of gas within the soil 199
Problems Chapter 7 201



8 Thermal behaviour of soils 204
8.1 Thermal properties of soils 204
8.1.1 Definitions 204
8.1.2 Heat capacity of soils 205
8.1.3 Thermal conductivity 208
8.1.4 Thermal diffusivity 210
8.1.5 Mechanisms of heat transport in soils 211
8.2 Modeling thermal conductivity 213
8.3 Techniques for measuring thermal properties 213
8.4 Phase transitions of H2O and their effects 214
8.4.1 Redistribution of water vapor by thermal flux 214
8.4.2 Freezing and the formation of ice 215
8.4.3 Freezing and water movement 216
8.4.4 Formation of structure 218
Problems Chapter 8 219



9 Combined water-, heat and gas budget of soils 221
9.1 The atmosphere–soil interface 221
9.1.1 Radiation components and radiation budgets 221
9.1.2 Energy budget at the soil surface 224
9.2 Dynamics and temporal variations of the soil water budget 226
9.2.1 Ground- and floodwater 228
9.2.2 Path of matric potentials 231
9.2.3 Parameters characterizing water budgets 236
9.2.3.1 Field capacity 236
9.2.3.2 Permanent wilting point 239
9.3 Heat budget 239
9.3.1 Temperature distributions in soils 240
9.3.2 Heat sources 241
9.3.3 Soil temperature variations 241
9.3.4 Cumulative effects on the heat budget 245
9.4 Gas budget of soils 247
9.4.1 How water content affects gas distribution within the soil profile 248
9.4.2 Seasonal variations of soil air 250
Problems Chapter 9 252



10 Plant habitats and their physical modification 255
10.1 Plant requirements in terms of water supply 255
10.2 Interaction of mechanical and hydraulic processes 258
10.2.1 Mechanical and hydraulic soil deformation 259
10.2.2 Pore function changes resulting from mechanical and hydraulic stresses 261
10.2.3 Interactions between hydraulic pore function and mechanical parameters 264
10.2.4 Effects of soil management on physical parameters 264
10.3 Modification of the hydraulic stress state 266
10.3.1 Drainage 267
10.3.2 Irrigation 270
10.3.3 Percolation 272
10.4 Modification of the mechanical stress state 273
10.4.1 Compaction 273
10.4.2 Loosening soils 274
10.4.3 Material rearrangement 275
Problems Chapter 10 277



11 Soil erosion 280
11.1 Soil erosion: general principles 280
11.1.1 Delamination of particles or aggregates 281
11.2 Approaches to preventing erosion 285
11.2.1 Erodibility of soils 286
11.2.2 Erosivity of wind and water 287
11.3 Erosion models 287
11.3.1 Soil erosion by water 288
11.3.2 Soil erosion by wind 290
Problems Chapter 11 290



12 Solute transport and filter processes in soils 293
12.1 Solute transport: basics 294
12.1.1 Breakthrough curves in porous media 294
12.1.2 Molecular diffusion 296
12.1.3 Convective flux and hydrodynamic dispersion 298
12.1.4 Adsorption 299
12.1.5 Convection-dispersion model of solute transport in soils 300
12.1.6 Additional factors influencing solute transport 302
12.1.7 Models describing solute transport 303
12.2 Filtering processes in soils 304
12.2.1 Filter types 304
12.2.2 Soils acting as filters 305
12.2.3 Filter efficiency 306
12.2.4 Optimizing filtering processes 308
Problems Chapter 12 309



13 Future Perspectives of Soil Physics 311
Solutions to the problems of chapters 1–12 319


14 References 347
Appendix
15 Commonly used units and conversion factors 373
Meaning of abbreviations 373
Basic conversions: density and pore volume 374
Transport 375
Derivation of the heat-budget equation 376
Energy Budget at the soil surface 377
Tensors 378
Conversion of units 379
Keyword Index 380

Short Description nach oben ↑

This textbook introduces the reader gently but comprehensively to soil physical processes. The authors discuss both the origin and dynamics of soil physical properties and functions - volume-mass relations of the solid, water and gas phases, grain and pore size distributions, permeability and storage capacity for water, gases and heat - and finally soil deformation and strength in relation to mechanical and hydraulic stresses resulting in structural changes through compaction, kneading, slaking and soil crusting. Unlike other soil physics textbooks, soil mechanical properties are herein described in great detail, because otherwise it is impossible to understand and adequately quantify soil stability and the effects of soil deformation on soil physical functions. This book is valuable for researchers, upper-level undergraduate students, and graduate students of agronomy, soil science, horticulture, geo-sciences, environmental science, landscape architects and everybody interested in understanding the intricate physical processes which control and modify soil functions. Problems are provided at the end of each chapter to enable readers to develop soil physics related problem solving skills.