cover
New

Monitoring Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

Contributions by the German National Data Center

Ed.: Christoph Pilger; Lars Ceranna; Christian Bönnemann

2017. 325 pages, 217 figures, 19 tables, 21x29cm, 1530 g
Language: English

(Geologisches Jahrbuch Reihe B, Band B 105)

ISBN 978-3-510-96858-9, bound, price: 58.00 €

in stock and ready to ship

Order form

BibTeX file

Sample pages

View Download

Keywords

nuclear explosionsseismic wavesradionuclidesremote sensingearthquakesNorth Korea

Contents

Synopsis top ↑

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is dedicated to banning nuclear explosions worldwide. It was negotiated and adopted by the Conference on Disarmament in Geneva to comprehensively prohibit nuclear testing underground, underwater, and in the atmosphere. It was opened for signature in 1996 and will enter into force as soon as all 44 nuclear technology holder countries, as denoted in Annex 2 to the Treaty, will have signed and ratified it.
Germany signed the CTBT in 1996 and ratified it in 1998, thereby committing to establish a National Data Center (NDC) and to install, operate, and maintain five stations of the International Monitoring System (IMS) for monitoring the compliances with the Treaty. Contributions on various CTBT related topics by authors from the Federal Institute for Geosciences and Natural Resources in Hannover (Bundesanstalt für Geowissenschaften und Rohstoffe, BGR), which has been mandated by Germany as the NDC, are presented in this book.
Studies on institutional, technical and scientific aspects in the CTBT context are described to highlight recent, current and future work at the German NDC and to contribute to the CTBT monitoring and verification tasks. Nevertheless, this book focuses primarily on those aspects of the verification regime where BGR has expertise as well as BGR’s activities and responsibilities as the German NDC and an IMS station operator during the last twenty years.
An overview of the CTBT history, verification, and implementation in Germany is provided together with a description of the five German IMS stations and the seismology, infrasound, hydroacoustic and radionuclide technologies. Studies on the global performance of the IMS technologies to detect, locate, and identify nuclear and non-nuclear events are presented, as well as various case studies on the application, testing and benchmarking of these technologies. These case studies include, in particular, the North Korean nuclear weapon tests from 2006 to 2016, but also the National Data Center preparedness exercises from 2007 to 2013, the Tohoku earthquake with tsunami and Fukushima reactor accident in 2011, and the Chelyabinsk meteoroid explosion in 2013.
Further studies are related to considerations on the quality of CTBT International Data Center waveform products, and to the usefulness and potential of satellite remote sensing in CTBT context as a National Technical Means (NTM). Finally, the role of On-Site Inspection (OSI) in general and, specifically, Seismic Aftershock Monitoring Systems (SAMS) are discussed for investigating potential treaty violations as the ultimate step in the verification chain.

Inhaltsbeschreibung top ↑

Der Kernwaffenteststopp-Vertrag (CTBT) ist ein internationales Abkommen zum weltweiten Verbot von Kernwaffenversuchen – sowohl unterirdisch als auch unter Wasser und in der Atmosphäre, gleich ob für zivile oder militärische Zwecke. Der Vertrag wurde auf der Abrüstungskonferenz der Vereinten Nationen in Genf ausgehandelt und liegt seit 1996 zur Unterschrift aus. Er tritt in Kraft, sobald alle 44 Staaten, die im Besitz von Nukleartechnologie sind (und im Annex 2 des Vertrages namentlich genannt werden), ihn unterschrieben und ratifiziert haben. Ein internationales Überwachungssystem (IMS) mit über den Globus verteilten Messstationen soll die Einhaltung des Vertrages sicherstellen.
Deutschland unterzeichnete den Vertrag 1996, ratifizierte ihn 1998 und verpflichtete sich damit zur Einrichtung eines Nationalen Datenzentrums (NDC) und zum Aufbau und Betrieb von fünf Messstationen im Rahmen des IMS.
Zunächst wird ein Überblick über die Geschichte des Kernwaffenteststopp-Verfahrens, über dessen Verifikation und Implementierung in Deutschland gegeben. Dann werden die fünf deutschen IMS-Stationen sowie die Überwachungstechnologien Seismologie, Infraschall, Hydroakustik und Radionuklide vorgestellt. Um die Anwendung dieser Technologien im Rahmen der Aufdeckung nuklearer und nicht-nuklearer Ereignisse sowie um ausgewählte Test- und Anwendungsfälle des Überwachungssystems geht es im Weiteren. Dazu zählen die Kernwaffentests Nordkoreas zwischen 2006 und 2016, die NDC-Bereitschaftsübungen von 2007 bis 2013, das Tohoku-Erdbeben mit Tsunami und dem Reaktorunfall 2011 und der Meteorit von Tscheljabinsk 2013.
Andere Beiträge befassen sich mit Qualitätsanalysen der Wellenformprodukte des internationalen CTBT-Datenzentrums, mit den Potenzialen der Satelliten-Fernerkundung, der Bedeutung von Vor-Ort-Inspektionen (OSI ) sowie der seismischen Nachbebenüberwachung (SA MS) bei der Untersuchung möglicher CTBTVertragsverletzungen als letzten Schritt in der Verifikationskette.

Table of Contents top ↑

Introduction 15
Overview and the Role of Germany in the Verification Regime
1 Verification of the CTBT and its Implementation in Germany 21
Christian Bönnemann
1.1 Introduction 21
1.2 Verification regime 24
1.3 Seismological monitoring of nuclear explosions in Germany
(before the CTBT) 25
1.4 Implementation of the CTBT in Germany 28
1.5 Verification of the CTBT in Germany 29
1.6 Main CTBT actors of the German Federal Government 33
1.7 Other German CTBT actors 34
2 German Contributions to the International Monitoring System (IMS) 35
Peter J. Gaebler, Christoph Pilger, Lars Ceranna, Gernot Hartmann,
J. Ole Ross, Clemens SChlosser & Andreas Bollhöfer
2.1 Introduction 35
2.2 Station operation and maintenance 39
2.3 Primary seismic monitoring station PS19 41
2.4 Auxiliary seismic monitoring station AS035 46
2.5 Infrasound array IS26 48
2.6 Infrasound array IS27 53
2.7 Radionuclide monitoring station RN33 59
Verification Technologies of the International Monitoring System
3 The Seismic Network of the International Monitoring System (IMS) 69
Peter J. Gaebler & Lars Ceranna
3.1 Introduction 69
3.2 IMS seismic network stations 70
3.3 Global seismicity and nuclear explosion tests 74
3.4 Event discrimination and magnitude-yield relationships 76
3.5 Detection capability of the seismic network – methodology 78
3.6 Detection capability of the seismic network – results 81
3.7 Comparison of the detection capability against REB events 89
3.8 Conclusions90
4 The Infrasound Network of the International Monitoring System
(IMS) 91

Christoph Pilger, Lars Ceranna & Alexis le Pichon
4.1 Introduction 91
4.2 Infrasound – an overview 91
4.3 Infrasound activity in Central and Northern Europe 93
4.4 Infrasound activity from Mt. Etna volcano 98
4.5 IMS global network performance 104
4.6 Conclusions 108

5 The Hydroacoustic Network of the International Monitoring System
(IMS) 111

Christoph Pilger & Lars Ceranna
5.1 Introduction 111
5.2 Hydroacoustic stations and technology 111
5.3 Hydroacoustic propagation 113
5.4 Hydroacoustic monitoring – examples of natural and anthropogenic
signals 116
5.5 Worldwide location of hydroacoustic events 119
5.6 Conclusions 121
6 The IMS Radionuclide Network Supported by
Atmospheric Transport Modelling (ATM) 123

J. Ole Ross, Andreas Bollhöfer & Clemens Schlosser
6.1 Introduction 123
6.2 Anthropogenic fission products in the atmosphere 125
6.3 Atmospheric Transport Modelling 129
6.4 Conclusions 133
7 Verification of the North Korean Nuclear Explosions
2006, 2009, 2013, and 2016 137

Gernot Hartmann, Andreas Barth, J. Ole Ross, Ilona Grünberg & Michaela Frei
7.1 Introduction 137
7.2 Seismic event localization 138
7.3 Source identification 141
7.4 Yield estimation 148
7.5 Moment tensor inversion 152
7.6 Radionuclide evidence 156
7.7 New and future system developments for CTBT 162
7.8 Conclusions 164
8 National Data Center Preparedness Exercises (NPE) for an
Independent Performance Assessment 167

J. Ole Ross, Nicolai Gestermann, Thomas Plenefisch,
Gernot Hartmann & Lars Ceranna
8.1 Introduction 167
8.2 First ideas realized in NPE2007 and NPE2008 168
8.3 NPE2009 – introducing “data fusion” 169
8.4 Complex multi-technology scenario for NPE2010 171
8.5 Straight non-compliance in NPE2012 179
8.6 NPE2013 181
8.7 NPE2015 185 .
8.8 Conclusions 185
9 The Tohoku Earthquake with Tsunami and the Fukushima Releases as
Performance Test for the International Monitoring System (IMS) 187

J. Ole Ross, Thomas Plenefisch, Lars Ceranna,
Andreas Bollhöfer & Clemens Schlosser
9.1 Introduction 187
9.2 The Tohoku earthquake of March 11, 2011 187
9.3 Atmospheric Transport Modelling simulating the Fukushima
radionuclide plume arrival at IMS stations across the globe 194
9.4 Backward modelling – finding Fukushima 199
9.5 Potential blinding of the IMS 200
9.6 Conclusions 203

10 Chelyabinsk – a Benchmark for Global Infrasound Detections
205

Christoph Pilger, Karl Koch, J. Ole Ross & Lars Ceranna
10.1 Introduction 205
10.2 Chelyabinsk – event description and source characteristics 205
10.3 Detections and non-detections by the global IMS network 206
10.4 Infrasound propagation modelling 211
10.5 Discussion of parameters influencing detection capability 213
10.6 The seismoacoustic fingerprint of the fireball across Central and Northern Europe 216
10.7 Conclusions 222
International Data Center,
National Technical Means and On-Site Inspection

11 Some Considerations on the Quality of International Data Center (IDC)
Standard Waveform Products 227

Karl Koch
11.1 Introduction 227
11.2 Quality control work on the IDC Reviewed Event Bulletin 229
11.3 The impact of interactive analysis on bulletin quality at the
International Data Center in 2007 235
11.4 Conclusions 246
12 Remote Sensing Data in Support of CTBT Monitoring: Case Studies of
Underground Nuclear Explosions 247

Jörg Schlittenhardt, Morton Canty, Xiaoying Cong & Ilona Grünberg
12.1 Introduction 247
12.2 DInSAR processing of ERS data over NTS 247
12.3 Co-seismic deformation 250
12.4 Post-seismic deformation 250
12.5 Wide-area change-detection: A case study of Nevada Test Site underground
nuclear explosions using conventional multispectral satellite data 254
12.6 Comparison of differential SAR interferometry and wide-area
change-detection results 255
12.7 Case study of the nuclear test in North Korea of October 9, 2006 255
12.8 Conclusions 257
13 The Role of On-Site Inspections (OSI) of the CTBT 259
Nicolai Gestermann, Martin Müller & Franz Groneschild
13.1 Introduction 259
13.2 Regulations and provisions from the Treaty 261
13.3 Decision about the conduct of an OSI 263
13.4 Possible scenarios for an OSI request 264
13.5 The role of NTM in case of an OSI 264
13.6 OSI technologies 266
13.7 OSI search logic and management systems 272
13.8 Results of an OSI 273
13.9 Integrated Field Exercises 2008 and 2014 274
13.10 Training and nomination of inspectors 277
13.11 Conclusions 278
14 The Seismic Aftershock Monitoring System (SAMS) for
On-Site Inspections (OSI) of the CTBT 279

Nicolai Gestermann, Benjamin Sick & Manfred Joswig
14.1 Introduction 279
14.2 Physical background 283
14.3 The role of SAMS in case of an OSI 285
14.4 The method of Nanoseismic Monitoring 286
14.5 SAMS at the IFE14 290
14.6 Detection threshold estimation of SAMS networks 296
14.7 Conclusions 299
References 303

Acronyms and Abbreviations 317
About the Authors 321