Original paper

Sex estimation based on mandibular measurements

Toneva, Diana; Nikolova, Silviya; Agre, Gennady; Zlatareva, Dora; Fileva, Nevena; Lazarov, Nikolai

Image of first page of:

Anthropologischer Anzeiger Volume 81 No. 1 (2024), p. 19 - 42

published: Jan 25, 2024
published online: Jul 14, 2023
manuscript accepted: Jun 14, 2023
manuscript revision received: Jun 14, 2023
manuscript revision requested: May 26, 2022
manuscript received: Apr 25, 2023

DOI: 10.1127/anthranz/2023/1733

BibTeX file

ArtNo. ESP140008101003, Price: 29.00 €

Download preview PDF Buy as PDF

Abstract

Medical imaging and machine learning are beneficial approaches in physical and forensic anthropology. They are particularly useful for the development of models for sex identification based on bone remains. The present study uses machine learning algorithms to create models for sex estimation based on mandibular measurements. The sample included head CT scans of 239 adult Bulgarians (116 males and 123 females). Three-dimensional coordinates of 45 landmarks of the mandible were acquired from segmented polygonal models of the skulls of these individuals. Two datasets of mandibular measurements were assembled. The first dataset included 51 measurements: linear, projective, and angular measurements. The second dataset included 990 interlandmark distances. Seven machine learning algorithms (Support Vector Machines, Neural Network, Naïve Bayes, Random Forest, J48, JRip, and Logistic Regression) were applied to the two datasets, and the classification accuracy was evaluated by 10x5-cross-validation. The selection of the best subsets of attributes specific to each of the abovementioned algorithms was done based on the attribute importance evaluated by an attribute selection scheme. In general, the sub-symbolic algorithms achieved higher results than the symbolic ones, except for the logistic regression. The best classification model was learnt by the Support Vector Machines algorithm, which achieved an accuracy of 95.3% on a dataset described by 19 interlandmark distances. In both datasets, the application of advanced attribute selection has led to an increase in the classification accuracy of all algorithms used in the experiments.

Keywords

mandible • sex estimation • measurements • machine learning • computed tomography