Original paper

Towards climate simulations at cloud-resolving scales

Hohenegger, Cathy; Brockhaus, Peter; Schär, Christoph

Meteorologische Zeitschrift Vol. 17 No. 4 (2008), p. 383 - 394

published: Aug 25, 2008

DOI: 10.1127/0941-2948/2008/0303

BibTeX file

ArtNo. ESP025011704004, Price: 29.00 €

Download preview PDF Buy as PDF

Abstract

This study explores the potential added-value of applying cloud-resolving resolution to climate simulations. A month-long (July 2006) integration is performed with the CCLM on a convection-resolving grid of 2.2-km (0.02°) mesh size spanning the whole Alpine region. The initial and lateral boundary conditions stem from a coarser-resolution 25-km (0.22°) CCLM integration. Comparison to observations indicates that the cloud-resolving simulation is able to capture the overall precipitation distribution and evolution. With respect to its driving lower-resolution integration, the cloud-resolving resolution yields a more accurate spatial localization of the precipitation maxima, reduces the cold bias, and especially reproduces a better timing of the convective diurnal cycle. The explicit resolution delays the onset of convective precipitation by about 2 h, shifts the time of peak precipitation by a similar period, and slows down the decay of convective activity in the afternoon. In return, the integration shows a tendency to underestimate the afternoon convective rainfalls, particularly under weak synoptic and/or orographic forcing. This latter effect might be improved by modifying the treatment of subgrid-scale clouds in the model.

Kurzfassung

Die vorliegende Studie untersucht den potentiellen Mehrwert von wolkenauflösenden Klimasimulationen. Es wird eine einmonatige Simulation (Juli 2006) mit dem CCLM-Modell vorgestellt, die den gesamten Alpenraum mit einem 2.2-km-Gitter (0.02°) abdeckt. Die Randdaten stammen von einem 25-km-Lauf (0.22°) mit dem selben Modell. Der Vergleich mit Beobachtungen zeigt, dass die wolkenauflösende Simulation die räumliche und zeitliche Niederschlagsverteilung wiedergeben kann. Verglichen mit der antreibenden Simulation mit ihrer gröberen Auflösung verbessert der wolkenauflösende Lauf die räumliche Verteilung der Niederschlags-Maxima, reduziert die Unterschätzung der Temperatur und verbessert insbesondere den Zeitpunkt des konvektiven Niederschlags. Die explizite Auflösung verzögert den Niederschlagsbeginn und die Zeit des Niederschlagsmaximums um 2 h und verlangsamt den Zerfall der konvektiven Aktivität am Nachmittag. Allerdings unterschätzt der Lauf den konvektiven Niederschlag am Nachmittag, und dies ganz besonders bei schwachem synoptischen und/oder orographischen Antrieb. Dieser Effekt könnte jedoch mit einer angepassten Behandlung von kleinen, nicht-aufgelösten Wolken reduziert werden.